Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Natcharee Kongprakaiwoot, Rudy L. Luck* and Eugenijus Urnezius

Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA

Correspondence e-mail: rluck@mtu.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.050$
$w R$ factor $=0.130$
Data-to-parameter ratio $=13.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Polymeric (diphenylphosphinato)tetrahydrofuranlithium

In the title compound, $\left[\operatorname{Li}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{P}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\right]_{n}$, the O atoms of adjacent and bridging diphenylphosphinate ligands and that from a tetrahydrofuran (thf) molecule are arranged in a tetrahedral manner around the Li atoms, resulting in a one-dimensional array (parallel to the a axis) of alternate eight-membered and rectangular planar four-membered rings [the two $\mathrm{Li}-\mathrm{O}$ distances are 1.962 (6) and 1.991 (6) \AA, and the $\mathrm{Li}-\mathrm{O}-\mathrm{Li}$ and $\mathrm{O}-\mathrm{Li}-\mathrm{O}$ angles are $88.3(2)$ and 91.7 (2) ${ }^{\circ}$, respectively]. The $\mathrm{Li}-\mathrm{O}$ distances for the O atoms of the phosphinate ligand are 1.992 (6) (for the μ-O atom) and 1.897 (6) \AA, and the distance from Li to the O atom of the thf ligand is 2.028 (6) \AA.

Comment

There has been only one previously reported structure of a lithium diorganophosphinate complex, namely $\mathrm{Li}\left[\mathrm{Mes}_{2} \mathrm{PO}_{2}\right]$ (Beswick et al., 1997). This complex consists of discrete dimeric molecules with two bridging $\mathrm{Mes}_{2} \mathrm{PO}_{2}{ }^{-}$(dimesitylphosphinate) ligands attached to two Li^{+}cations, forming eight-membered rings. Two thf molecules, attached to each Li^{+} cation via lone pairs on the O atoms, complete the coordination geometry for these distinct dimers.

(I)

In contrast, the title compound, (I), has a linear polymeric arrangement with two types of rings, alternating with each other. As seen in Fig. 1, there is an eight-membered ring, previously observed with bridging dimesitylphosphinate ligands, and also rectangular planar arrays consisting of two Li and two O atoms from adjacent phosphinate ligands (as seen in the packing diagram, Fig. 2). The rectangular part is a result of the eight-membered ring dimers binding with each other. An O atom from a thf molecule completes the tetrahedral geometry around each Li^{+}atom. This arrangement no doubt results as this $\mathrm{Ph}_{2} \mathrm{PO}_{2}^{-}$ligand is less sterically hindered than the $\mathrm{Mes}_{2} \mathrm{PO}_{2}{ }^{-}$one. The linear arrangement appears to be very

Received 8 November 2002
Accepted 15 November 2002 Online 22 November 2002
stable, as the compound does not dissolve in common organic solvents.

Experimental

1,4-Dibromo-2,3-dinitro-benzene was reacted with 2 equivalents of n-butyllithium (anhydrous thf, 173 K), followed by the addition of 2.5 equivalents of diphenylchlorophosphine (anhydrous thf, 193 K). The subsequent work-up (filtration, solvent removal, washings with diethyl ether) yielded a pale brown powder as a mixture of reaction products. Crystals of the title compound were obtained by allowing diethyl ether diffusion into a thf solution of the product mixture.

Crystal data

$\left[\mathrm{Li}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{P}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\right]$
$M_{r}=296.21$
Monoclinic, $P 2_{1} / n$
$a=5.790(1) \AA$
$b=16.655$ (3) A
$c=15.782(3) \AA$
$\beta=98.07$ (2) ${ }^{\circ}$
$V=1506.9(6) \AA^{3}$
$Z=4$
$D_{x}=1.306 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=10-15^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, light yellow
$0.35 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection
Enraf-Nonius TurboCAD-4 diffractometer
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.0^{\circ}$
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.941, T_{\text {max }}=0.981$
2913 measured reflections
2635 independent reflections
1602 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0465 P)^{2}\right. \\
& \quad+0.9374 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.006 \\
& \Delta \rho_{\max }=0.30 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{P} 1-\mathrm{O} 2$	$1.494(2)$	$\mathrm{O} 1-\mathrm{Li} 1^{\mathrm{i}}$	$1.962(6)$
$\mathrm{P} 1-\mathrm{O} 1$	$1.505(2)$	$\mathrm{O} 1-\mathrm{Li} 1$	$1.991(6)$
$\mathrm{P} 1-\mathrm{C} 1$	$1.810(3)$	$\mathrm{Li} 1-\mathrm{O} 2^{\mathrm{ii}}$	$1.897(6)$
$\mathrm{P} 1-\mathrm{C} 7$	$1.811(3)$	$\mathrm{Li} 1-\mathrm{O} 50$	$2.028(6)$
$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Li} 1^{\mathrm{i}}$	$148.6(2)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Li} 1-\mathrm{O} 1$	$91.7(2)$
$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Li} 1$	$120.7(2)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Li} 1-\mathrm{O} 50$	$104.4(3)$
$\mathrm{Li} 1^{\mathrm{i}}-\mathrm{O} 1-\mathrm{Li} 1$	$88.3(2)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Li} 1-\mathrm{O} 50$	$109.6(3)$
$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{Li} 1-\mathrm{O} 1^{\mathrm{i}}$	$122.6(3)$	$\mathrm{O} 1-\mathrm{Li} 1-\mathrm{O} 50$	$107.3(3)$
$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{Li} 1-\mathrm{O} 1$	$120.2(3)$		

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $2-x,-y, 1-z$.

H atoms were positioned geometrically and allowed to ride on their respective parent atoms.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figure 1
ORTEP-3 (Farrugia, 1997) view of (I), shown with 50% probability displacement ellipsoids. H atoms have been omitted.

Figure 2
PLATON (Spek, 1990) diagram of the crystal packing. Color code: green P , yellow Li, red O and black C .

Support from Michigan Technological University is acknowledged.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Beswick, M. A., Cromhout, N. L., Harmer, C. N., Palmer, J. S., Raithby, P. R., Steiner, A., Verhorevoort, K. L. \& Wright, D. S. (1997). J. Chem. Soc. Chem. Commun. pp. 583-584.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst, A24, 351359.

